Performance Evaluation of Runtime Data Exploration Framework based on In-Situ Particle Based Volume Rendering

  • Takuma Kawamura Japan Atomic Energy Agency
  • Tomoyuki Noda Japan Atomic Energy Agency
  • Yasuhiro Idomura

Abstract

We examine the performance of the in-situ data exploration framework based on the in-situ Particle Based Volume Rendering (In-Situ PBVR) on the latest many-core platform. In-Situ PBVR converts extreme scale volume data into small rendering primitive particle data via parallel Monte-Carlo sampling without costly visibility ordering. This feature avoids severe bottlenecks such as limited memory size per node and significant performance gap between computation and inter-node communication. In addition, remote in-situ data exploration is enabled by asynchronous file-based control sequences, which transfer the small particle data to client PCs, generate view-independent volume rendering images on client PCs, and change visualization parameters at runtime.In-Situ PBVR shows excellent strong scaling with low memory usage up to ~100k cores on the Oakforest-PACS, which consists of 8,208 Intel Xeon Phi7250 (Knights Landing) processors. This performance is compatible with the remote in-situ data exploration capability.

Author Biography

Takuma Kawamura, Japan Atomic Energy Agency
Graduate School of Engineering, Kyoto University, Completed doctoral course in 2011.Japan Atomic Energy Agency, Researcher in 2011.Researcher on Visualization.Member of the Japan Atomic Energy Society and Visualization Information Society.

References

Visit user’s manual. Tech. rep., Lawlence Livermore National Laboratory (2005), https: //wci.llnl.gov/simulation/computer-codes/visit/manuals

Henderso, A.: Paraview guide, a parallel visualization application. Tech. rep., Kitware Inc. (2005), http://www.paraview.org

Howison, M., Bethel, E.W., Childs, H.: Hybrid parallelism for volume rendering on large- , multi-, and many-core systems. IEEE Trans. Vis. Comput. Graph. 18(1), 17–29 (2012), DOI: 10.1109/TVCG.2011.24

Kawamura, T., Idomura, Y., Miyamura, H., Takemiya, H.: Algebraic design of multi- dimensional transfer function using transfer function synthesizer. Journal of Visualization 20(1), 151–162 (Feb 2017), DOI: 10.1007/s12650-016-0387-1

Kawamura, T., Idomura, Y., Miyamura, H., Takemiya, H., Sakamoto, N., Koyamada, K.: Remote visualization system based on particle based volume rendering. In: Pro- ceedings of the conference on VDA. Visualization and Data Analysis 2015, SPIE (2015), DOI: 10.1117/12.2083501

Kawamura, T., Noda, T., Idomura, Y.: In-situ visual exploration of multivariate volume data based on particle based volume rendering. In: Proceedings of the 2Nd Workshop on In Situ Infrastructures for Enabling Extreme-scale Analysis and Visualization. pp. 18–22. ISAV ’16, IEEE Press, Piscataway, NJ, USA (2016), DOI: 10.1109/ISAV.2016.9

Kawamura, T., Sakamoto, N., Koyamada, K.: Level-of-detail rendering of a large-scale irregular volume dataset using particles. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 25(5), 905–915 (2010), DOI: 10.1007/s11390-010-9375-4

Knoll, A., Wald, I., Navr ́atil, P.A., Papka, M.E., Gaither, K.P.: Ray tracing and volume rendering large molecular data on multi-core and many-core architectures. In: Proceedings of the 8th International Workshop on Ultrascale Visualization. pp. 5:1–5:8. UltraVis ’13, ACM, New York, NY, USA (2013), http://doi.acm.org/10.1145/2535571.2535594

Larsen, M., Meredith, J., Navr ́atil, P., Childs, H.: Ray-Tracing Within a Data Parallel Framework. In: Proceedings of the IEEE Pacific Visualization Symposium. pp. 279–286. Hangzhou, China (Apr 2015), 10.1109/PACIFICVIS.2015.7156388

Larsen, M., Brugger, E., Childs, H., Eliot, J., Griffin, K., Harrison, C.: Strawman: A batch in situ visualization and analysis infrastructure for multi-physics simulation codes. In: Proceedings of the First Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization (ISAV), held in conjunction with SC15. pp. 30–35. Austin, TX (Nov 2015), http://doi.acm.org/10.1145/2828612.2828625

Levoy, M.: Display of surfaces from volume data. IEEE Comput. Graph. Appl. 8(3), 29–37 (May 1988), DOI: 10.1109/38.511

Moreland, K., Sewell, C., Usher, W., ta Lo, L., Meredith, J., Pugmire, D., Kress, J., Sch- roots, H., Ma, K.L., Childs, H., Larsen, M., Chen, C.M., Maynard, R., Geveci, B.: Vtk-m: Accelerating the visualization toolkit for massively threaded architectures. IEEE Computer Graphics and Applications 36(3), 48–58 (2016), DOI: 10.1109/MCG.2016.48

Peterka, T., Yu, H., Ross, R., Ma, K.L.: Parallel volume rendering on the ibm blue gene/p. In: Proceedings of the 8th Eurographics Conference on Parallel Graphics and Visualization. pp. 73–80. EGPGV ’08, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland (2008), DOI: 10.2312/EGPGV/EGPGV08/073-080

Peterka, T., Yu, H., Ross, R., Ma, K.L., Latham, R.: End-to-end study of parallel volume rendering on the ibm blue gene/p. In: Proceedings of ICPP 09. Vienna, Austria (2009), DOI: 10.1109/ICPP.2009.27

Sakamoto, N., Kawamura, T., Koyamada, K., Nozaki, K.: Improvement of particle-based volume rendering for visualizing irregular volume data sets. Computers & Graphics 34(1), 34–42 (2010), DOI: 10.1016/j.cag.2009.12.001

Sakamoto, N., Koyamada, K.: Kvs: A simple and effective framework for scientific visu- alization. Journal of Advanced Simulation in Science and Engineering 2(1), 76–95 (2015), http://doi.org/10.15748/jasse.2.76

Sakamoto, N., Nonaka, J., Koyamada, K., Tanaka, S.: Particle-based volume rendering. Asia-Pacific Symposium on Visualization 2007 pp. 129–132 (2007), DOI: 10.3154/tvsj.27.7

Tu, T., Yu, H., Bielak, J., Ghattas, O., L ́opez, J.C., Ma, K., O’Hallaron, D.R., Ram ́ırez- Guzm ́an, L., Stone, N., Taborda-Rios, R., Urbanic, J.: Analytics challenge - remote run- time steering of integrated terascale simulation and visualization. In: Proceedings of the ACM/IEEE SC2006 Conference on High Performance Networking and Computing, Novem- ber 11-17, 2006, Tampa, FL, USA. p. 297 (2006), DOI: 10.1145/1188455.1188767

Tu, T., Yu, H., Ramirez-Guzman, L., Bielak, J., Ghattas, O., Ma, K.L., O’Hallaron, D.R.: From mesh generation to scientific visualization: An end-to-end approach to parallel super- computing. In: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing. SC ’06, ACM, New York, NY, USA (2006), DOI: 10.1145/1188455.1188551

Wald, I., Johnson, G.P., Amstutz, J., Brownlee, C., Knoll, A., Jeffers, J., Gunther, J., Navr ́atil, P.A.: Ospray - A CPU ray tracing framework for scientific visualization. IEEE Trans. Vis. Comput. Graph. 23(1), 931–940 (2017), DOI: 10.1109/TVCG.2016.2599041

Woop, S., Feng, L., Wald, I., Benthin, C.: Embree ray tracing kernels for cpus and the xeon phi architecture. In: ACM SIGGRAPH 2013 Talks. pp. 44:1–44:1. SIGGRAPH ’13, ACM, New York, NY, USA (2013), DOI: 10.1145/2504459.2504515

Yamashita, S., Yoshida, H., Takase, K.: Development of numerical simulation method for relocation behavior of molten debris in nuclear reactors (1) preliminary analysis of relocation of molten debris to lower plenum. In: Proceedings of 21st International Conference on Nuclear Engineering (ICONE-21). vol. 4, p. V004T09A109. Nuclear Engineering Division (2013), DOI: 10.1115/icone21-16604
Published
2017-09-01