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Resilience is a major roadblock for HPC executions on future exascale systems. These systems

will typically gather millions of CPU cores running up to a billion threads. Projections from current

large systems and technology evolution predict errors will happen in exascale systems many times

per day. These errors will propagate and generate various kinds of malfunctions, from simple

process crashes to result corruptions.

The past five years have seen extraordinary technical progress in many domains related to

exascale resilience. Several technical options, initially considered inapplicable or unrealistic in the

HPC context, have demonstrated surprising successes. Despite this progress, the exascale resilience

problem is not solved, and the community is still facing the difficult challenge of ensuring that ex-

ascale applications complete and generate correct results while running on unstable systems. Since

2009, many workshops, studies, and reports have improved the definition of the resilience problem

and provided refined recommendations. Some projections made during the previous decades and

some priorities established from these projections need to be revised. This paper surveys what the

community has learned in the past five years and summarizes the research problems still considered

critical by the HPC community.
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1. Introduction

We first briefly introduce the terminology that is used in this paper, following the taxonomy

of Aviženis and others [3, 90]. System faults are causes of errors, which manifest themselves

as incorrect system states. Errors may lead to failures, where the system provides an incorrect

service (e.g., crashes or provides wrong answers). We deal with faults by predicting, preventing,

removing, or tolerating them. Fault tolerance is achieved by detecting errors and notifying about

errors and by recovering, or compensating for errors, for example, by using redundancy. Error

recovery includes rollback, where the system is returned to a previous correct state (e.g., a

checkpoint) and rollforward, where a new correct state is created. Faults can occur at all levels

of the stack: facilities, hardware, system/runtime software, and application software. Fault

tolerance similarly can involve a combination of hardware, system, and application software.

This paper deals with resilience for exascale platforms: the techniques for keeping applica-

tions running to a correct solution in a timely and efficient manner despite underlying system

faults. The lack of appropriate resilience solutions is expected to be a major problem at exascale:

We discuss in Section 2 the many reasons errors are likely to be much more frequent in exascale

systems. The current solutions used on petascale platforms, discussed in Section 3, may not

scale up to exascale. We risk having systems that can perform quintillions of operations each

second but never stay up long enough to progress in their computations, or produce results that

cannot be trusted.

The problem of designing reliable computers out of unreliable components is as old as

computing—as old as Babbage’s analytical engine [15]. Frequent failures were a major problem

in the earliest computers: ENIAC had an mean time to failure of two days [93]. Major advances

in this area occurred in the 1950s and 1960s, for example, in the context of digital telephone
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switches [35] and mainframes [91]. More recently, NASA examined the use of COTS (non-

rad-hardened) processors for space missions, which requires tolerance of hardware errors [70].

Resilience for HPC is a harder problem, however, since it involves large systems performing

tightly coupled computations: an error at one node can propagate to all the other nodes in

microseconds.

Five years ago we published a survey of the state of the art on resilience for exascale platforms

[19]. Since then, extraordinary technical progress has been made in many domains related to

exascale resilience. Several technical options, initially considered inapplicable or unrealistic in the

HPC context, have demonstrated surprising success. Despite this progress, the exascale resilience

problem is not solved, and the community still faces the difficult challenge of ensuring that

exascale applications complete and generate correct results while running on unstable systems.

Since 2009, many workshops, studies, and reports have improved the definition of the resilience

problem and provided refined recommendations [18, 19, 32, 38, 39, 58, 69, 90]. Some projections

made during the previous decades and some priorities established from these projections now

need to be revised. This paper surveys what the community has learned in the past five years

(Section 4) and summarizes the research problems still considered critical by the HPC community

(Section 5).

2. The Exascale Resilience Problem

Future exascale systems are expected to exhibit much higher fault rates than current systems

do, for various reasons relating to both hardware and software.

2.1. Hardware Failures

Hardware faults are expected to be more frequent: since clock rates are not increasing,

performance increases require a commensurate increase in the number of components. With

everything else being equal, a system 1,000 times more powerful will have at least 1,000 times

more components and will fail 1,000 times more frequently.

However, everything else is not equal: smaller transistors are more error prone. One major

cause for transient hardware errors is cosmic radiation. High-energy neutrons occasionally in-

teract with the silicon die, creating a secondary cascade of charged particles. These can create

current pulses that change values stored in DRAM or values produced by combinatorial logic.

Smaller circuits are more easily upset because they carry smaller charges. Furthermore, multiple

upsets become more likely. Smaller feature sizes also result in larger manufacturing variances,

hence larger variances in the properties of transistors, which can result in occasional incorrect

or inconsistent behavior. Smaller transistors and wires will also age more rapidly and more un-

evenly so that permanent failures will become more frequent. Energy consumption is another

major bottleneck for exascale. Subthreshold logic significantly reduces current leakage but also

increases the probability of faults.

Vendors can compensate for the increase in fault rates with various techniques. For example,

for regular memory arrays, one can use more powerful error correction codes and interleave

coding blocks in order to reduce the likelihood of multiple bit errors in the same block. Buses

are usually protected by using parity codes for error detection and by retries; it is relatively

easy to use more powerful codes. Logic units that transform values can be protected by adding

F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, M. Snir

2014, Vol. 1, No. 1 5



redundancy in the circuits. Researchers have estimated that an increase in the frequency of

errors can be avoided at the expense of 20% more circuits and more energy consumption [90].

Whether such solutions will be pursued is unclear, however: the IC market is driven by

mobile devices that are cost and energy sensitive and do not require high reliability levels.

Most cloud applications are also cost sensitive but can tolerate higher error rates for individual

components. The small market of high-end servers that require high reliability can be served by

more costly solutions such as duplication or triplication of the transactions. This market is not

growing in size or in the size of the systems used. Thus, if exascale systems will be built out of

commodity components aimed at large markets, they are likely to have more frequent hardware

errors that are not masked or not detected by hardware or software.

2.2. Software Failures

As hardware becomes more complex (heterogeneous cores, deep memory hierarchies, com-

plex topologies, etc.), system software will become more complex and hence more error-prone.

Failure and energy management also add complexity. Similarly, the increase use of open source

layers means less coordinated design in software, which will increase the potential for software er-

rors. In addition, the larger scale will add complexities as more services need to be decentralized,

and complex failure modes that are rare and ignored today will become more prevalent.

Application codes are also becoming more complex. Multiphysics and multiscale codes couple

an increasingly large number of distinct modules. Data assimilation, simulation, and analysis are

coupled into increasingly complex workflows. Furthermore, the need to reduce communication,

allow asynchrony, and tolerate failures results in more complex algorithms. Like system software,

these more complex algorithms and application codes are more error-prone.

Researchers have predicted that large parallel jobs may fail as frequently as once every 30

minutes on exascale platforms [90]. Such failure rates will require new error-handling techniques.

Furthermore, silent hardware errors may occur, requiring new error-detection techniques in

(system and/or application) software.

3. Lessons learned from Petascale

Current petascale systems have multiple component failures each day. For example, a study

of the Blue Waters system [1] during its 2013 preproduction period showed that, across all

categories of events, an event that required remedial repair action occurred on average every 4.2

hours and that systemwide events occurred approximately every 160 hours [34]. The reported

rates included events that failed transparently to applications or were proactively detected before

application use but required remedial actions. Events with performance inconsistency and long

failover times were reported as errors even if applications and the failover operation eventually

completed successfully. Hence the events that were actually distuptive to applications were

about half as frequent. In the first year of Blue Waters’ full production, the rates improved by

approximately a factor of 2. Similar rates are reported on other systems. A significant portion of

failures are due to software—in particular, file and resource management systems. Furthermore,

software errors take longer than hardware errors to recover from and account for the majority

of downtime.

Software errors could be avoided by more rigorous testing. Testing HPC software at scale

is hard and expensive, however. Since very large systems are one of a kind, each with a unique
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configuration, they are expensive and require unique machine rooms. Usually, vendors are not

able to deploy and test a full system ahead of installation at the customer site, and customers

cannot afford long testing periods ahead of actual use. Some scalability bugs will occur only

intermittently at full scale. Subtle, complex interactions of many components may take a long

time to occur. Many of the software products deployed on a large platform are produced by

small companies or by teams of researchers that have limited resources for thorough testing on

multiple large platforms.

The standard error-handling method on current platforms is periodic application checkpoint.

If a job fails, it is restarted from its last checkpoint. Checkpoint and restart logic is part of the

application code. A user checkpoint can be much smaller than a system checkpoint that would

save all the application’s memory; the checkpoint information can be also used as the output

from a simulation; and a user checkpoint can be used to continue a computation on another

system.

For single-level checkpointing, the checkpoint interval can be computed by using the for-

mula developed by Young [97] or Daly [29]. Young’s formula is particularly simple: Interval =√
2×MTTI × checkpt, where MTTI is the mean time to interrupt and checkpt is the check-

point time. This formula approximates the optimum checkpoint interval, assuming a memoryless

model for failures. For large jobs, this typically implies a checkpoint about every hour or multiple

times per hour.

Root cause analysis of failures, especially software failures, is hard. Error logs may report

which component signaled a failure, but failures can be due to a complex chain of events. For

illustration, consider the actual case of a system crash due to a fan failure: The failure of one

fan caused multiple hardware components to stop working; the cascade of errors reported from

all these components overwhelmed the monitoring network and crashed the monitoring system;

this crash, in turn, caused the entire system to crash [57]. The volume of system activity and

event processing for large-scale systems is on the order of several tens of gigabytes and hundreds

of millions of events per day during normal activity.

Current systems do not have an integrated approach to fault tolerance: the different subsys-

tems (hardware, parallel environment software, parallel file system) have their own mechanisms

for error detection, notification, recovery, and logging. Also, current systems do not have good

error isolation mechanisms. For example, the failure of any component in a parallel job results

in the failure of the entire job; the failure of the hardware monitoring infrastructure may impact

the entire machine.

We note that all reports on failure rates focus on hardware and system software and ignore

application software. From the viewpoint of the supercomputing center, a failure due to a bug

in the application code is not a failure. Such failures are not reported, and no statistics of

their frequency exist. Also, supercomputing centers have no information on errors that were not

detected by hardware or system software. An incorrect result may be detected by the user once

the run is complete, but it will be practically impossible to correctly attribute such an error to

a root cause. Anecdotal evidence suggests that undetected hardware errors do occur on current

systems [57].

4. Progress toward Exascale Resilience

We present in this section the most significant research progress in resilience since 2009.

F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, M. Snir

2014, Vol. 1, No. 1 7



4.1. System Software Approaches

We first discuss the progress in handling fail-top errors by checkpointing. We then describe

other approaches, including forward recovery, replication, failure prediction, and silent data

corruption mitigation.

4.1.1. Checkpointing

To tolerate fail-stop errors (node, OS or process crash, network disconnections, etc.), all

current production-quality technologies rely on the classic rollback recovery approach using

checkpoint restart (application-level or system-level). Solutions focus on applications using MPI

and Charm++. The most popular approach is application-level checkpointing, where the pro-

grammer defines the state that needs to be stored in order to guarantee a correct recovery in

case of failure. The programmer adds some specific functions in the application to save essential

state and restore from this state in case of failure. One of the drawbacks of checkpointing in

general, and of application-level checkpointing in particular, is the nonoptimality of checkpoint

intervals. Another drawback is the burden placed on the I/O infrastructure, since the checkpoint

I/O may actually interfere with communication and I/O of other applications. The impact of

suboptimal checkpoint intervals is investigated in [68]. System-level checkpoint can also be used

in production, with technologies such as BLCR [63]. Some recent research in this domain focuses

on the integration of incremental checkpointing in BLCR. In the past few years, research teams

have developed mechanisms to checkpoint accelerators [81, 83].

The norm in 2009 was to store the application state on remote storage, generally a parallel

file system, through I/O nodes. Checkpoint time was significant (often 15–30 minutes), because

of the limited bandwidth of the parallel file system. When checkpoint time is close to the MTBF,

the system spends all its time checkpointing and restarting, with little forward progress. Since

the MTJI may be an hour or less on exascale platforms, new techniques are needed in order to

reduce checkpoint time.

One way of achieving such a reduction is to reduce the checkpoint size. Techniques such as

memory exclusion, data compression, and compiler analysis to detect dead variables have been

proposed. More recently some researchers have explored hybrid checkpointing [94], data aggre-

gation [67], incremental checkpointing in the context of OpenMP [17], and data deduplication

with the hope that processes involved in parallel HPC executions have enough similarities in

memory [6] to reduce the size of the data sets necessary to be saved. However, what we mentioned

five years ago is still valid: Programmers are in the best position to know the critical data of

their application but they cannot use adaptive data protection other than by doing it manually.

Annotations about ways to protect or check key data, computations, or communications are still

a relevant direction.

Another way of reducing checkpoint time is to reduce the usage of disks for checkpoint stor-

age. In-memory checkpointing has been demonstrated to be fast and scalable [99]. In addition,

multilevel checkpointing technologies such as FTI [4] and SCR [78] are increasingly popular. Mul-

tilevel checkpointing involves combining several storage technologies (multiple levels) to store

the checkpoint, each level offering specific overhead and reliability trade-offs. The checkpoint is

first stored in the highest performance storage technology, which generally is the local memory of

a local SSD. This level supports process failure but not node failure. The second level stores the

checkpoint in remote memory of remote SSD. This second level supports a single-node failure.
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The third level corresponds to the encoding the checkpoints in blocks and in distributing the

blocks in multiple nodes. This approach supports multinode failures. Generally, the last level of

checkpointing is still the parallel file system. This last level supports catastrophic failures such

as full system outage. Charm++ provides similar multilevel checkpointing mechanisms [98].

The checkpoint period can be defined in different ways. Checkpoints also can be moved be-

tween levels in various ways, for example, by using a dedicated thread [4] or agents running

on additional nodes [87]). A new semi-blocking checkpoint protocol leverages multiple levels of

checkpoint to decrease checkpoint time [80]. A recent result computes the optimal combination

of checkpoint levels and the optimal checkpoint intervals for all levels given the checkpoint size,

the performance of each level, and the failure distributions for each level [82]. Other recent re-

search concerns the understanding of the energy footprint of multilevel checkpointing and the

exploration of trade-offs between energy optimization and performance overhead. The progress

in multilevel checkpointing is outstanding, and some initiatives are looking at the definition of

a standard interface.

By offering fast checkpointing at the first level, multilevel checkpointing also offers the

opportunity to increase the checkpoint frequency and checkpoint at a smaller granularity. For

example instead of checkpointing at the outermost loop of an iterative method, multilevel check-

pointing could be used in some inner loops of the iterative method. Reducing the granularity

of checkpointing is also the objective of task-based fault tolerance. The principle is to consider

the application code as a graph of tasks and checkpoint the input parameter of each task on

local storage with a notion of transaction: either a task is completed successfully and its results

are committed in memory, or the task is restarted from its checkpointed input parameters. This

approach is particularly relevant for future nonvolatile memory on computing nodes. The non-

volatile memory would store the input parameters checkpoints and the committed results. The

OMPsS environment offers a first prototype of this approach [92]. One of the key questions is

how to ensure a consistent restart in case of a node failure. Solutions need to consider how to

store the execution graph and the local memory content in order to tolerate a diversity of failure

scenarios.

The past five years have also seen excellent advances in checkpointing protocols. Classic

checkpointing protocols are used to capture the state of distributed executions so that, after

a failure, the distributed executions (or a part of them) restart and produce a correct execu-

tion [44]. In the HPC domain, classic checkpointing protocols are rarely used in production en-

vironments because most of the applications use application-level checkpointing that implicitly

coordinates the capture of the distributed state and guarantees the correctness of the execu-

tion after restart. Without additional support, however, application-level checkpointing imposes

global restart even if a single process fails. Message-logging fault-tolerant protocols offer a so-

lution to avoid global restart and to restart only the failed processes. By logging the messages

during the execution and replaying messages during recovery, they allow the local state recon-

struction of the failed processes (partial restart). The main limitation is the necessity to log all

messages of the execution. Several novel fault tolerance protocols overcome this limitation by

reducing significantly the number of messages to log. They fall into the class of hierarchical fault

tolerance protocols, forming clusters of processes and using coordinated checkpointing inside

clusters and and message logging between clusters [61, 77, 84]. Such protocols need to manage

causal dependencies between processes in order to ensure correct recovery. Multiple approaches

have been proposed for reducing the overhead of storing causal dependency information [11, 20].
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Partial restart opens opportunities for accelerated recovery. Charm++ and AMPI accelerate

recovery by redistributing recovering processes on nodes that are not restarting [22]. Message

logging can by itself accelerate recovery because messages needed by recovering processes are

immediately available and messages to be sent to nonrestarting processes are just canceled [84].

These two aspects reduce the communication time during recovery. A recent advance in hierar-

chical fault tolerance protocols is the formulation and solving of the optimal checkpoint interval

in this context [9]. Partial restart also opens the opportunity to schedule other jobs (than the

recovering one) on resources running nonrestarting processes during the recovery of the failed

processes. While this principle does not improve the execution performance for the job affected

by the failure, it significantly improved the throughput of the platform that execute more jobs

in a given amount of time compared with restarting all the processes of a job when a failure

occurs [12]. This new result demonstrates another benefit of message-logging protocols that was

not known before.

4.1.2. Forward Recovery

In some cases, the application can handle the error and execute some actions to terminate

cleanly (checkpoint on failure [7]) or follow some specific recovery procedure without relying on

classic rollback recovery. Such applications use some form of algorithmic fault tolerance. The

application needs to be notified of the error and runs forward recovery steps that may involve

access to past or remote data to correct (sometimes partially) or compensate the error and its

effect, depending on the latency of the error detection.

A prerequisite for rollforward recovery is that some application processes and the runtime

environment stay alive. While standard MPI does not preclude an application continuing after a

fault [60], the MPI standard does not provide any specification of the behavior of an MPI applica-

tion after a fault. For that purpose, researchers have developed several resilient MPI designs and

implementations. The FT-MPI (fault-tolerant MPI) library [50, 66] was a first implementation

of that approach. As the latest development, ULFM [8] allows the application to get notifica-

tions of errors and to use specific functions to reorganize the execution for forward recovery.

Standardization of resilient MPI is complex; and despite several attempts, the MPI Forum has

not reached a consensus on the principles of a resilient MPI. The GVR [100] system developed

at the University of Chicago also provides mechanisms for application-specified forward error

recovery. GVR design features two key concepts: (1) a global view of distributed arrays to

processes and (2) versioning of these distributed arrays for resilience. APIs allow navigation of

multiple versions for flexible recovery. Several applications have been tested with GVR.

4.1.3. Replication

Understanding of replication has progressed significantly in the past five years. Several teams

have developed MPI and Charm++ prototypes offering process-level replication. Process-level

replication of parallel executions is more reliable than replicated parallel executions under the

assumption that the replication scheme itself is reliable. Several challenges need to be solved in

order to make replication an attractive approach for resilience in HPC. First, the overhead of

replication on the application execution time should be negligible. Second, replication needs to
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guarantee equivalent state of process replicas,4 which is not trivial because some MPI operations

are not deterministic. A third, more complex challenge is the reduction of the resource and energy

cost of replication. By default, replication needs twice the number of resources compared with

nonreplicated execution.

One major replication overhead comes from the management of extra messages required

for replication. Without specific optimization, when a replicated process sends a message to

another replicated process, four communications of that message take place. rMPI addresses this

problem by reducing the number of communications between replicas [51]. rMPI and MR-MPI

[46] orchestrate non-MPI deterministic operations between process replicas to ensure equivalence

of internal state. While rMPI and MR-MPI focus on process replication to address fail-stop

errors, RedMPI [53] leverages process replication for detection of silent data corruptions (SDCs).

The principle of RedMPI is to compare on the receiver side messages sent by replicated senders. If

the message contents differ, a silent data corruption is suspected. RedMPI offers an optimization

to avoid sending all messages needed in a pure replication scheme and to avoid comparing the

full content of long messages. For each MPI message, replicated senders compute locally a hash

of the message content, and only one of the replicated senders actually sends the message and

the hash code to replicated receivers. Other replicas of the senders send only the hash code.

Receivers then compare locally the hash code received from the replicated senders.

Reducing the resource overhead of process replication is a major challenge. One study [52],

however, shows that replication can be more efficient than rollback recovery in some extreme

situations where the MTBF of the system is extremely low and the time to checkpoint and

restart is high. While recent progress in multilevel checkpointing make these situations unlikely,

the results in [52] demonstrate that high rollback recovery overheads can lead to huge resource

waste, up to the point where replication becomes a more efficient alternative. MR-MPI explores

another way of reducing replication resource overhead by offering partial replication, where

only a fraction of the processes are replicated. This approach is relevant when the platform

presents some asymmetry in reliability (some resources being more fragile than others) and when

this asymmetry can be monitored. Partial replication should be complemented by checkpoint

restart to tolerate failures of non replicated processes [42]. Some libraries, for example, the

ACR library [79] for MPI and Charm++ programs, cover both hard failures and SDCs from

replication.

4.1.4. Failure Prediction

One domain that has made exceptional progress in the past five years is failure prediction.

Before 2009, considerable research focused on how to avoid failures and their effects if failures

could be predicted. Researchers explored the design and benefits of actions such as proactive

migration of checkpointing [47, 74, 95]. The prediction of failures itself, however, was still an

open issue. Recent results from the University of Illinois at Urbana-Champaign [54–56] and the

Illinois Institute of Technology [101, 102] clearly demonstrate the feasibility of error prediction

for different systems: the Blue Waters CRAY system based on AMD processors and NVIDIA

GPUs and the Blue Gene system based on IBM proprietary components. Failure prediction

techniques have progressed by combining data mining with signal analysis and methods to spot

outliers.

4Internal state of process replicas do not need to be identical, but external interactions of each process replica

should be consistent with a correct execution of the parallel application
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Some failures can be predicted with more than 60% accuracy5 on the Blue Waters system.

Further research is needed to extend the results to other subsystems, such as the file system.

We are still far from the accuracy needed to switch from pure reactive fault tolerance to truly

proactive fault tolerance.

Other advances concern the combination of application-level checkpointing and failure pre-

diction [10]. An important question is how to run the failure predictor on large infrastructures.

One approach is to run a failure predictor in each node of a system in order to avoid the scala-

bility limitation of global failure prediction. This approach faces two difficulties: (1) local failure

prediction will impose an overhead on the application running on the node, and (2) local failure

prediction is less accurate than global failure prediction because the failure predictors have only

a local view. These two difficulties are explained in [10]. Another important question is how to

compute the optimal interval of preventive checkpoints when a proportion of the failures are

predicted [10]. In particular, many formulations of the optimal checkpoint interval problem con-

sider that failures follow an exponential distribution of interarrival times. This approximation

may be acceptable if we consider all failures in the system. Is it acceptable for failure that are

not predicted correctly and for which preventive checkpointing is needed?

4.1.5. Energy Consumption

A new topic emerged in the community few years ago: energy consumption of fault tolerance

mechanisms. The first paper on the topic we are aware of [41] presents a study of the energy

footprint of fault tolerance protocols. The important conclusion of the paper is that, at least

for clusters, little difference exists between checkpointing protocols. The study also shows that

the difference in energy depends mainly on the difference in execution time and only slightly on

the difference of power consumption of the operation performed by the different protocols. The

reason is that the power consumptions of computing, checkpointing, and message logging are

close in clusters.

Some teams [76] developed models for expected run time and energy consumption for global

recovery, message logging, and parallel recovery protocols. These models show in an exascale

scenario that parallel recovery outperforms coordinated checkpointing protocols since paral-

lel recovery reduces the rework time. Other researchers [2] developed performance and energy

models and formulated an optimal checkpointing period considering energy consumption as the

objective to optimize.

Another research issue is the energy optimization of checkpoint/restart on local nonvolatile

memory [85]. The intersection of resilience and energy consumption is also explored in a recent

study [86].

4.1.6. Mitigating Silent Data Corruptions

One of the main challenges that HPC resilience faces at extreme scale and in particular in

exascale systems and beyond is the mitigation of silent data corruptions (SDCs). As mentioned in

previous sections, the risk of silent data corruptions is increasing. Several studies have explored

the impact of SDCs in execution results [16, 43, 73]. These studies show that a majority of SDCs

leads to noticeable impacts such as crashes and hangs but that only a small fraction of them

5Accuracy here is defined as the prediction recall: the number of correctly predicted failures divided by the

number of actual failures
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actually corrupt the results. Nevertheless, the likelihood of generating wrong results because of

SDC is significant enough to warrant study of mitigation techniques.

An excellent survey of error detection techniques is presented in [71]. A classic way to detect

a large proportion of SDCs (but not all) is replicating executions and comparing results. Fol-

lowing this approach, RedMPI [53] offers replication at the MPI process level, and replication

at the thread level is studied in [96] by leveraging hardware transactional memory. The first

issue with SDC detection by replication is the overhead in resources. A second issue is that, in

principle, comparison of results supposes that execution generates identical results, which means

obtaining bit-to-bit deterministic results from executions using same input parameters. Applica-

tions may not have this property because of nondeterministic operations performed during the

execution. In general the trend toward more asynchrony and more load balancing plays against

deterministic executions. Then the detection from replication becomes the problem of evaluating

the similarity of results generated from replicated executions. Quantification of this similarity

is an extremely hard problem because it assumes an understanding of how results diverge as

a result of indeterministic operations, which itself depends on the thorough understanding of

roundoff error propagation. Consequently, in SDC detection explore solutions that requires less

resources and potentially relax the precision of detection.

A recent direction could be called approximate replication. The principle of approximate

replication is to run the normal computation along with a an approximate computation that

generates an approximate result. The comparison is then performed between the result and the

approximate result. The approximate calculation gives upper and lower bounds within which

the result of the normal calculation should be. Results outside the bounds are suspect; and

corrective actions, such as further verification or re-execution, may be triggered. Approximate

replication is a generic approach. It could be performed at the numerical method [5] level. It also

could be used at the hardware level by comparing floating-point results of a normal operator

with the ones of an approximate operator [37, 40, 75].

Another important issue related to SDC detection is the choice of methodology for evaluating

and comparing algorithms. The standard process is to inject faults and obtain statistics on

coverage and recovery overheads. Simulating hardware at the physical level is not feasible, and

simulating it at a register transfer level is onerous. Most researchers inject faults in higher-level

simulators [33]. But it is difficult to validate such fault injectors and know how the fault patterns

they exhibit are related to faults exhibited by real hardware. A recent study compares different

injection methods and their accuracy for the SPECint benchmark [27]. However, the accuracy

of injection in HPC applications is still an open problem.

4.1.7. Integrative Approaches

The community has expressed in several reports the need for integrative approaches con-

sidering all layers from the hardware to the application. At least five projects explore this

notion in different ways. One recent study demonstrates the benefit of cross-layer management

of faults [64]. The containment domains approach [28] proposes a model of fault management

based on a hierarchical design. Domains at a given level are supposed to detect and contain

faults using techniques available at that level. If faults cannot be handled at that level, then the

fault management becomes the responsibility of the next level in the hierarchy. Containment

approaches operate between domains of the same level and between levels. Such approaches are

applicable, in principle, at the hardware level and at all other software levels.
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A different approach is proposed by the BEACON pub/sub mechanism in the Argo project

[48], the GIB infrastructure in the Hobbes project [49], and the open resilience framework of the

GVR project [100]. These mechanisms extend in different ways the concept of communication

between software layers, originally proposed in the CIFTS project [62]. BEACON, GIB, and

CIFTS/FTB are backplanes implementing exchanges of notifications and commands about errors

and failures between software running on a system. Response managers should complement

backplane infrastructures by lessening error and failure events and implementing mitigation

plans.

4.2. Algorithmic Approaches

In our paper of five years ago, we discussed approaches for either recovering from or suc-

cessfully ignoring faults, including early efforts in algorithm-based fault tolerance and in fault-

oblivious iterative methods. Since that time, significant progress has been made in algorithmic

approaches to detecting and recovering from faults. For example, the 2014 SIAM conference on

parallel processing featured four sessions of seventeen talks covering many aspects of resilient

algorithms. Here, we describe some of the progress in this area. The work presented is just a

sampling of recent results in algorithm-based fault tolerance and is meant to give the reader a

starting point for further exploration of this area.

Perhaps the most important change has been a clearer separation of the faults into two

categories: fail-stop (a process fails and stops, causing a loss of all state in the process) and

fail-continue (a process fails but continues, often due to a transient error). The latter has two

important subcases based on whether the fault is detected or not. An example of the former is a

failure of an interconnect cable, allowing the messaging layer to signal a failure but permitting

the process to continue. An example of the latter is a undetected, uncorrectable memory error.

Considerable progress has been made in the area of fail-continue faults, spurred by the recog-

nition that transient faults (sometimes called soft faults), rather than fail-stop faults, are likely

to be the most important type of faults in exascale systems.

Dense Linear Algebra. Fault-tolerant algorithms for dense linear algebra have a long history;

at the time of our original paper, several techniques for algorithms such as matrix-matrix mul-

tiplication that made use of clever checksum techniques were already known [24, 65]. Progress

in this area includes the development of ABFT for dense matrix multiplication [25] and fac-

torizations [36] that addresses fail-stop faults. These provide the necessary building blocks to

address complete applications; for example, a version of the HPLinpack benchmark that handles

fail-stop faults with low overhead has been demonstrated [31]. Recent work has extended to the

handling of soft faults or the fail-continue case for dense matrix operations [30].

Sparse Matrices and Iterative Methods. Algorithms involving sparse matrices and using

iterative methods are likely to be important for exascale systems because many of the science

applications that are expected to run on these systems solve large sparse linear and nonlinear

systems. Work here has looked at both fail-stop and fail-continue faults. For example, [88, 89]

evaluates a number of algorithms for both stability and accuracy in the presence of faults and

describes an approach for transforming applications to be more resilient. A related approach can

detect soft errors in Krylov methods by using properties of the algorithm so that the computation

can be restarted or corrected [23]. Recent work has also looked at working with the system to
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provide more information and control for the library or application in handling likely errors,

such as different types of DRAM failures [14].

Designing for Selective Reliability. One of the limitations of ABFT is that it can address

errors only in certain parts of the application, for example, in the application’s data but not in

the program’s instructions. This situation can be addressed in part by using judicious replica-

tion of pointers and other data structures [21], though this still leaves other parts of the code

unprotected. An alternative is to consider variable levels of reliability in the hardware—using

more reliable hardware for hard-to-repair problems and less reliable hardware where the algo-

rithm can more easily recover and structure the ABFT to take advantage of the different levels

of reliability [13, 72].

Efficient Checkpoint Algorithms. For many applications, a checkpoint approach is the only

practical one, as discussed in Section 4.1. In-memory checkpoints can provide lower overheads

than I/O systems but in their simplest form consume too much memory. Thus, approaches that

use different algorithms for error-correcting code have been developed. An early example that

exploited MPI I/O semantics to provide efficient blocking and resilience for file I/O operations

is [59]. A similar approach has been used in SCR [78]. A more sophisticated approach, building

on the coding and checksum approach for dense linear algebra, is given in [26].

5. Future Research Areas

The community has identified several research areas that are particularly important to the

development of resilient applications on exascale systems:

• Characterization of hardware faults

• Development of a standardized fault-handling model

• Improved fault prediction, containment, detection, notification, and recovery

• Programming abstractions for resilience

• Standardized evaluation of fault-tolerance approaches

Characterization of hardware faults is essential for making informed choice about research

needs for exascale resilience. For example, if silent hardware faults are exceedingly rare, then the

hard problem of detecting such errors in software or tolerating their impact can be ignored. If

errors in storage are exceedingly rare, while errors in compute logic are frequent, then research

on mechanisms for hardening data structures and detecting memory corruptions in software is

superfluous.

Suppliers and operators of supercomputers are often cagey about statistics on the frequency

of errors in their systems. A first step would be to systematically and continually gather con-

sistent statistics about current systems. Experiments could also be run in order to detect and

measure the frequency of SDCs, using spare cycles on large supercomputers.

As work progresses on the next generation of integrated circuits, experiments will be needed

to better characterize their sensitivity to various causes of faults.

Development of a standardized fault-handling model is key to providing guidance to applica-

tion and system software developers about how they will be notified about a fault, what types

of faults they may be notified about, and what mechanisms the system provides to assist re-

covery from the fault. Applications running on today’s petascale systems are not even notified

of faults or given options as to how to handle faults. If the application happens to detect an
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error, the computer may also eventually detect the error and kill the application automatically,

making application recovery problematic. Therefore, today’s petascale applications all rely on

checkpoint-restart rather than on resilient algorithms.

Development of a standardized fault-handling model implies that computer suppliers can

agree on a list of common types of fault that they are able to notify applications about. Re-

covery from a node failure differs significantly from recovery from an uncorrectable data value

corruption. Resilient exascale applications may incorporate several recovery techniques targeted

to particular types of faults. Even so, these resilient exascale applications are expected to be able

to recover from only a subset of the common types of faults. Also, the ability to recover depends

on the time from fault occurrence to fault notification. At the least, “fence” mechanisms are

needed in order to ensure that software waits until all pending notifications that could affect

previous execution are delivered.

A standardized fault-handling model needs to have a notification API that is common across

different exascale system providers. The exact mechanism for notifying applications, tools, and

system software components is not as critical as the standardization of the API. A standardized

notification API will allow developers to develop portable, resilient codes and tools.

A fault-handling model also needs to define the recovery services that are available to ap-

plications. For example, if notified of a failed node, is there a service to add a spare node or

to migrate tasks to other nodes? If the application is designed to survive data corruption, is

there a way to specify reliable memory regions? Can one specify reliable computational regions

in a code? In today’s petascale systems, if such services exist, they are available only to the

RAS system and are not exposed to the users. A useful fault model would have a standard set of

recovery services that all computer suppliers would provide to the software developers to develop

resilient exascale applications.

The fault-handling model should support hierarchical fault handling, with faults handled

in the smallest context capable of doing so. A fault that affects a node should be signaled to

that node, if it is capable of initiating a recovery action. For example, memory corruption that

affects only application data should be handled first by the node kernel. The model should

provide mechanisms for escalating errors. If a node is not responsive or cannot handle an error

affecting it, then the fault should be escalated to an error handler for the parallel application

using that node. If this error handler is not responsive or cannot handle the error, then the error

should be escalated to a system error handler.

Improved fault prediction, containment, detection, notification, and recovery research re-

quires major efforts in one area: the detection of silent (undetected) errors. Indeed, exascale is

highly unlikely to be viable without error detection.

Significant uncertainty remains about the likely frequency of SDC in future systems; one

can hope that work on the characterization of hardware faults will reduce this uncertainty. Much

uncertainty also remains about the impact of SDCs on the executing software. We do not have,

at this point, technologies that can cope with frequent SDCs, other than the brute force solutions

of duplication or triplication.

Arguably, significant research has been done on algorithmic methods for handling SDCs.

Current research, however, focuses on methods that apply to specific kernels that are part of

specific libraries. We do not have general solutions, and we do not know whether current ap-

proaches could cover a significant fraction of computation cycles on future supercomputers. It is
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imperative to develop general detection/recovery techniques or show how to combine algorithmic

methods with other methods.

Research on algorithmic methods considers only certain types of errors, for example, the

corruption of data values, but not the corruption of the executing code, or hardware errors that

affect the interrupt logic. It is important to understand whether such omission is justified by

the relative frequency of the different types of errors or, if not, what mechanisms can be used

to cope with errors that are not within the scope of algorithmic methods.

Moreover, fault detection mechanisms that are not algorithmic specific but use compiler and

runtime techniques may be harder, but they would have a higher return because they would

apply to all application codes.

Fault containment tries to keep the damage caused by the fault from propagating to other

cores, to other nodes, and potentially to the corruption of checkpointed data, rendering recovery

impossible. Successful containment requires early detection of faults before many computations

are done and before that data is transmitted to other parts of the system. Once the fault

has propagated, local recovery is no longer viable; and if detection does not occur before an

application checkpoint, even global recovery may be impossible. Successful fault containment is

key to low-cost recovery.

Fault prediction does not replace fault detection and correction, but it can significantly

increase the effective system and application MTBF, thus significantly decreasing time wasted

to checkpoint and recovery. Furthermore, techniques developed for fault prediction help root

cause analysis and thus reduce maintenance time.

Fault notification is an essential component of the previously described fault-handling model.

The provision of robust, accurate, and scalable notification mechanisms for the HPC environment

will require new techniques.

Current overheads for recovery from system failures are significant; a system may take hours

to return to service. Clearly, the time for system recovery must be reduced.

Programming abstractions for resilience will be able to grow out of a standardized fault

handling model. Many programming abstractions have been explored, and several examples were

described in previous sections. These research explorations have not shown a single programming

abstraction for resilience that works for all cases. In fact, they show that several programming

abstractions will need to be developed and supported in order to develop resilient exascale

applications.

The development of fault-tolerant algorithms requires various resilience services: For exam-

ple, some parts of the computation must execute correctly, while other parts can tolerate errors;

some data structures must be persistent; others may be lost or corrupted, provided that errors

are detected before corrupted values are used; and still other data structures can tolerate limited

amounts of corruptions.

More fundamentally, one needs semantics for programs that enable us to express their relia-

bility properties. The development of efficient fault-tolerant algorithms requires the programmer

to think of computations as stochastic processes, with performance and outcome dependent on

the distribution of faults. The validation or testing of such stochastic programs requires new

methods as well.

Resilience services and appropriate semantics would also facilitate the development of system

code. Many system failures, in particular failures in parallel file systems, are due to various forms

of resource exhaustion, as servers become overloaded or short in memory and fail to respond
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in a timely manner. The proper configuration of such systems is a trial-and-error process. One

would prefer systems that are resilient by design.

Standardized evaluation of fault tolerance approaches will provide a way to measure the

efficiency of a new approach compared with other known approaches. It will also provide a way

to measure the effectiveness of an approach on different architectures and at different scales.

The latter will be important to determine whether the approach can scale to exascale. Even

fault-tolerant Monte Carlo algorithms have been shown to have problems scaling to millions of

processors [45]. Standardized evaluation will involve development of a portable, scalable test

suite that simulates all the errors from the fault model and measures the recovery time, services

required, and the resources used for a given resilient exascale application.
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applications with a semi-blocking algorithm. In Proceedings of IEEE Cluster’12, Beijing,

China, September 2012.

81. Akira Nukada, Hiroyuki Takizawa, and Satoshi Matsuoka. Nvcr: A transparent checkpoint-

restart library for nvidia cuda. In IPDPS Workshops, pages 104–113, 2011.

82. Optimization of Multi-level Checkpoint Model for Large Scale HPC Applications. Opti-

mization of multi-level checkpoint model for large scale HPC applications. In Proceedings

of IEEE IPDPS 2014, 2014.

83. A. Rezaei, G. Coviello, CH. Li, S. Chakradhar, and F Mueller. Snapify: Capturing snap-

shots of offload applications on Xeon Phi manycore processors. In Proceedings of High-

Performance Parallel and Distributed Computing, HPDC’14, 2014.

84. Thomas Ropars, Tatiana V. Martsinkevich, Amina Guermouche, Andre Schiper, and

Franck Cappello. Spbc: leveraging the characteristics of MPI HPC applications for scalable

checkpointing. In Proceedings of IEEE/ACM SC, page 8, 2013.

85. Takafumi Saito, Kento Sato, Hitoshi Sato, and Satoshi Matsuoka. Energy-aware I/O opti-

mization for checkpoint and restart on a NAND flash memory system. In In Proceedings of

the Workshop on Fault-Tolerance for HPC at Extreme Scale (FTXS), pages 41–48, 2013.

86. Osman Sarood, Esteban Meneses, and L. V. Kale. A cool way of improving the reliability

of HPC machines. In Proceedings of The International Conference for High Performance

Computing, Networking, Storage and Analysis, IEEE/ACM SC’13, Denver, CO, USA,

November 2013.

87. Kento Sato, Naoya Maruyama, Kathryn Mohror, Adam Moody, Todd Gamblin, Bronis R.

de Supinski, and Satoshi Matsuoka. Design and modeling of a non-blocking checkpointing

system. In Proceedings of IEEE/ACM SC’12, page 19, 2012.

F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, M. Snir

2014, Vol. 1, No. 1 25



88. Joseph Sloan, Rakesh Kumar, and Greg Bronevetsky. Algorithmic approaches to low

overhead fault detection for sparse linear algebra. 42rd Annual IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN), 2012.

89. Joseph Sloan, Rakesh Kumar, and Greg Bronevetsky. An algorithmic approach to er-

ror localization and partial recomputation for low-overhead fault tolerance. 43rd Annual

IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), 2013.

90. Marc Snir, Robert W Wisniewski, Jacob A Abraham, Sarita V Adve, Saurabh Bagchi, Pa-

van Balaji, Jim Belak, Pradip Bose, Franck Cappello, Bill Carlson, Andrew A Chien, Paul

Coteus, Nathan A DeBardeleben, Pedro C Diniz, Christian Engelmann, Mattan Erez, Save-

rio Fazzari, Al Geist, Rinku Gupta, Fred Johnson, Sriram Krishnamoorthy, Sven Leyffer,

Dean Liberty, Subhasish Mitra, Todd Munson, Rob Schreiber, Jon Stearley, and Eric Van

Hensbergen. Addressing failures in exascale computing. International Journal of High

Performance Computing Applications, 28(2):129–173, May 2014.

91. L. Spainhower and T.A. Gregg. IBM S/390 parallel enterprise server G5 fault tolerance: A

historical perspective. IBM Journal of Research and Development, 43(5.6):863–873, 1999.

92. Omer Subasi, Javier Arias, Jesus Labarta, Osman Unsal, Adrian Cristal, and Barcelona Su-

percomputing Center. Leveraging a task-based asynchronous dataflow substrate for efficient

and scalable resiliency, research report of polythecnic university of catalonia - computer

architecture department. num: Upc-dac-rr-cap-2013-12. 2014.

93. Alexander Randall V. The Eckert tapes: Computer pioneer says ENIAC team couldn’t

afford to fail - and didn’t. Computerworld, 40(8), February 2006.

94. Chao Wang, F. Mueller, C. Engelmann, and S.L. Scott. Hybrid checkpointing for MPI jobs

in HPC environments. In Parallel and Distributed Systems (ICPADS), 2010 IEEE 16th

International Conference on, pages 524–533, Dec 2010.

95. Chao Wang, Frank Mueller, Christian Engelmann, and Stephen L. Scott. Proactive process-

level live migration and back migration in HPC environments. J. Parallel Distrib. Comput.,

72(2):254–267, February 2012.

96. Gulay Yalcin, Osman Sabri Unsal, and Adrian Cristal. Fault tolerance for multi-threaded

applications by leveraging hardware transactional memory. In Proceedings of the ACM

International Conference on Computing Frontiers, page 4. ACM, 2013.

97. John W Young. A first order approximation to the optimum checkpoint interval. Commu-

nications of the ACM, 17(9):530–531, 1974.

98. Gengbin Zheng, Chao Huang, and Laxmikant V. Kalé. Performance evaluation of auto-
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